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Abstract. The embedded-atom method (EAM) has been highly successful in predicting many 
properties of fcc metals. However, it is known to underestimate surface energies by as much 
as 40 to 50%. This suggests that it would be interesting to explore the possibility of obtaining 
a surface wrrection to the embedding energy. In this paper. the functional form for a surface 
embedding function. Fsuryac8, for the embedded-atom method (EAM) is proposed. The existence 
of a different F for surface atoms than for bulk atoms stems from the fact that the presence 
of a surface modifies the energy band structure of the solid. In order to study this change, 
we used the tight-binding method, that provides the ingredients needed la obtain an explicit 
expression for the relevant quantities. By comparing the energies of the !?AM and tight binding 
for a surface-terminated bulk. we obtain a correction to the EAM embedding function and the 
EAM energy for the system. In order to quantify OUI result we apply it to the lower-index 
surface planes of Ag and Pd by adjusting our tight-binding parameters with known, available 
first-principles results for the (11 1) plane. We then predict the surface energies for the (100) 
and (110) planes with our method and show an improvement over using the bulk embedding 
function as compared with first-principles values. 

1. Introduction 

The embedded-atom method @AM) has been a very successful semi-empirical method for 
predicting a variety of properties of fcc metals, such as defects, impurities and phonon 
spectra [l-71. However, although predicting physical trends properly, the method gives 
poorer quantitative results for surface energies. The EAM and similarly constructed 
methods, such as the FinnisSinclair method, seem to underestimate surface energies by 
as much as 40-50% as compared to experiment and ab initio calculations [S-lo]. 

Recently, Haftel [9]  has examined this question by guessing a surface embedding 
function. Other attempts have been made to improve EAM by including higher-order 
moments [Ill.  We use the tight-binding method (TB) on a surface in order to obtain the 
functional for a correction to the embedding energy. In the EAM the electron density used in 
the evaluation of the embedding energy is constructed by simple overlap of atomic densities. 
Part of the power of the method results from the simpliciiy of this approximation. With this 
in mind, we stay within the original spirit of'the EAM by expressing the correction to the 
embedding energy as a function of the electron density, our hope being that the functional 
form obtained will prove to have a more general applicability. 
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The summary of this paper is as follows: in section 2, we obtain the energy band 
for a bulk-surface system within the tight-binding (TB) framework. In section 3 we give 
the expressions used for the TB Coulomb and resonance integrals as a function of the 
near-neighbour distance between atoms. In section 4 we obtain an analytical form for the 
correction term, due to the presence of the surface, to the bulk EAM embedding function. 
Once this is accomplished, we use the analytical form of the EAM provided by Johnson 
[12,13] to implement calculations. By calibrating our results with those of Methfessel et a1 
[8] for (111) planes, in order to fix the unknown TB parameters, we obtain the values of 
the surface energies for the (100) and ( 1  IO) surfaces of Ag and Pd. 

2. Energy spectrum 

In order to define a surface contribution to the embedding energy we consider a cubic crystal 
and use its band structure within the tight-binding method. The energies in a band are given 
by: 

E = I Y + ~ ~ ( C O S ~ I  + C O S & + C O S ~ ~ )  (1) 
where a is the Coulomb integral and p is the resonance integral. The variables 81, 02 and g 
are dimensionless reciprocal space coordinates. In the case of a bulk extending indefinitely 
in all three spatial directions, each of these coordinates exists in the region [ -x,  n]  at 
intervals of 2n/N, where N is the linear dimension of the solid under consideration. If, 
instead, the bulk is terminated at certain plane perpendicular to the z-axis, then 03 should 
be a root of the following equation [14]: 

z+cos8j+sin8~cot(Ne3) = O  (2) 
where the parameter z is the difference between the bulk and surface Coulomb integrals 
in units of p: z = (a - 0r’)/p7 where a‘ i s  the surface Coulomb integral. If we solve 
equation (2), and substitute its roots into equation ( I ) ,  we would find the energy spectrum 
of a system consisting of a surface-terminated bulk. Equation (2) does not have an analytical 
solution in the general case. However, by assuming that the difference (Y - U’ is small, we 
can solve equation (2) by perturbation techniques. 

Let us explicitly write 

e3 = 03” + 5 (3) 
where 5 is a small quantity and 0: are the roots of equation (2) when z = 0 

(4) 
n e, = -s s=O,1,2 ,..., N .  

N + 1  
If we substitute 0, from equation (3) into equation (2), keeping only terms up to first 

order in 5 ,  we obtain 

5 =o. N 

Thus, 

Equation (1) written in first order $5 reads 

E =ar+2fi(cosSl + c o s ~ ~ + c o s ~ ~ )  -2gesin.4:. (7) 
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Substitution of 5 from equation (6) into equation (7) provides the energy spectrum of 
the bulk-surface system. The first term on the right-hand side of the equation is the typical 
bulk energy term. The second term is the contribution to the energy due to the presence of 
the surface and will be termed E,,r~fl,. 

3. TJ3 versus lattice parameters 

In a crystal lattice, the interatomic distance is directly related to its density. To evaluate 
the EAM density term, we first proceed to evaluate the TB~parameters as a function of the 
interatomic separation, R. From the interaction between two atoms [15, 161, we can write, 
for the resonance and Coulomb integrals: 

6 = P(R) e-2vR 

(2q)2”-‘ ~ 2 ” - 2  -2qR 
(Y = Eo - 4- e 

(2n)! 
where q is the decay length of an atomic wave function, n is the principal quantum number 
for the highest occupied atomic level, and P(R) is a polynomial in R .  

The TB Coulomb integrals can be rewritten as follows: 

where a,,, a; and y are constants that depend on the particular material. In principle they 
can be evaluated from the higher occupied atomic level, the Fermi energy, the function and 
the ionization potential. In these expressions, the exponential term corresponds to the effect 
of the rest of the atoms on the particular integral: the Coulomb integrals go to a constant 
and the resonance integral tends to zero as the distance between the atoms increases. Notice 
that (YO was chosen to be the same for both surface and bulk Coulomb integrals, since at 
infinite separation, the surface and bulk atoms are indistinguishable, and, in fact, a0 is the 
energy of the free-atom state from which the crystal band is built. 

4. The EAM surface term 

Our purpose in this section is to obtain a functional form for a correction to the embedding 
energy from the results of sections 2 and 3. 

Substituting the results of the previous section into equation (7) and inteagating for all 
states below the Fermi energy, 

(12) 

We denote the integral up to E F  by I. In the case of metals, it can be calculated explicitly 
and is 

(13) 
n I = - N 2 .  
3 

EsurjYc. takes the simple form: 

E,,r~oc.  = 21(a1 - cfi)RZ”-2e--yR (14) 
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On the other hand, the energy can be calculated from the EAM by first considering all 

(15) 

where FBufx(ps) is the standard embedding function in the EAM obtained from bulk 
behaviour and FSurfoce(ps) is the correction proposed from the present method, where pr 
is the electron density obtained by the regular EAM approach, i.e. superposition of atomic 
densities. 

Now we can identify the EAM energy with the energy of the previously calculated 
surface-bulk system and get 

N3 atoms as being bulk and then correcting for the N2 surface atoms thus 

EEAM = E B ~ I X  - N 2 F ~ , ~ & )  + NzFsNrfac&s) 

01 

(17) 
21 01, 

which defines a functional form for a correction to the embedding energy. In the previous 
expression, NM is the number of nearest neighbours for an (MI)  surface atom and NB is 
the number of nearest neighbours for a bulk atom. This is the main result of this work and 
provides an explicit functional form for a correction to the embedding function in terms of 
R and which maintains the simplicity of EAM. 

For consistency, we need to express the interatomic distance, R, in terms of the surface 
charge density. This can be done once an electron wave function around the atoms has 
been chosen. As an example, if we choose hydrogenic ns functions, and consider up to 
first nearest neighbours, 

Fsxrfuce(Pr) = F ~ d a h )  $ly,"~ - NhkdR2"-' emPR 

This suggests, from equations (17) and (I@, that the correction term can be written as 

(19) 
Pr 

Nhlii 
AF(/Jwrface) = COnstant(NBufk - NhKf)-. 

5. Application to Ag and Pd surfaces 

We now test equation (17) by use of Johnson's [12,13] analytic EAM which provides a 
simple method for calculating surface energies. Johnson limits the contribution to nearest- 
neighbour interactions and models the electron density and the pair-repulsion term by 
exponentials, thus giving a simple, analytic expression for the embedding energy and the 
pair repulsion in terms of the electron density. The standard, bulk embedding energy is 
given by 

where the density is given by 

p ( r )  = pee-a((r/~2-1) r < re (21) 

and the pair repulsion energy is given by 

r 4 re (22) = @ e e - w / G - l )  
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where 6 = 3(Q,B,/Ec)1~2, S2, and B, are the equilibrium atomic volume and bulk modulus, 
Ec is the cohesive energy, r and re are the nearest-neighbour and equilibrium nearest- 
neighbour distances and pe and @< are the equilibrium values of the electron density and 
pair repulsion energy. w and A are parameters given by Johnson. We proceed by writing 
F,.r~afnce(p,y) in equation (17) selecting y = w, fix the unknown constant by using the ab 
initio values of Methfessel et a1 [SI for the (1 11)  planes of Ag and Pd and use the same 
coefficient to predict the surfaces energies of the (100) and (110) surfaces. In addition, 
we include a further addition to the result. The assumption that the Coulomb integral is 
the same as in equation (16) is equivalent to a bond-breaking argument [17]. Methfqsel 
[17] showed that the variation of the bond strength is proportional to the square root of 
the co-ordination. Therefore we include a correction to ai to retlect this result, namely we 
assume a c l . ~ ~ , , ~ ~ ~ ~  = (N~,1x/Nn~i)”~ai~,i& which modifies the second term in equation (19) 
giving 

A F ( P . ~ r f u c e )  = constant(NB,lk - Ni~k~(NBuik/Nh&~)l”)(Ps/Nhki). (23) 
The results are presented in table 1. Two values are given for the (110) surfaces 

since, unlike the (100) and (111) surfaces, the second plane loses a nearest neighbour in 
creating the surface, and we therefore present the values with and without the full tight- 
binding correction for these atoms. As can be seen, this simple approach gives a substantial 
improvement as compared with the first-principles results of Methfessel et al [SI. 

Table 1. Comparison of predicted values of the surface energies of the (100) and (110) surfaces 
of Ag and Pd with the EAM [7] vallles and with the ab initio values of Methfessel et a1 (81. 
The (111) values of [8] are used as the input to fix the constants. The two values for the (110) 
surfaces include the atom in lhe second plane as a bulk and as a suam atom, respectively. 

Present results (in ergs c d )  

Equation (19) Equation(23) EAM [7] 1st principles [8] 

Pd 
(111) 1640 1610 1220 -1640 
(100) 1983 2000, 1370 1870 
(110) (2041) 2146 (2071) 2170 1490 1970 

& 
(111) 1210 1210 620 1210 
(100) 1423 1440 710 1210 
(110) (1417) 1526 (1448) 1553 770 1260 

6. Discussion 

We have proposed a procedure for determining a correction to the surface embedding energy 
in the EAM by  use of the tight-binding method. The functional form for this correction 
maintains the original simplicity of the EAM. Using first-principle results and Johnson’s 
analytic EAM, we have shown that this approximation has the potential to give a substantial 
improvement in agreement with first-principle predictions of the surface energies of the (100) 
and (110) surfaces of Ag and Pd based on the present result (table I). The same procedure 
could have been applied to any metal where EAM applies and first-principle, or other, 
results were available to fix constants. A further issue arises concerning the application 
of the present result to other surface defects such as steps. Interestingly, the (110) results 
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suggest an approach with regard to the definition of a surface atom. Simply taking atoms 
naively defined as surface atoms in tems of the rigid surface for application of the procedure, 
and using standard EAM for any other atom (i.e. atoms in the second layer in this case), 
gives only a 5-7% difference over treating both first- and second-layer atoms as surface 
atoms (the two (110) values in table 1). 

We have also included the results for the square root coordination dependence of the 
bond strength proposed by Methfessel er a1 [17] in table 1. We did not find that the results 
were substantially changed by this inclusion. However, we took the proportionality constant 
to be equal to one. Had we included it as an adjustable parameter the results might have been 
improved, however this would require further input from either first-principle calculations 
or other sources to fix this parameter. 
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